social.coop is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Fediverse instance for people interested in cooperative and collective projects. If you are interested in joining our community, please apply at https://join.social.coop/registration-form.html.

Administered by:

Server stats:

490
active users

#numpy

2 posts2 participants0 posts today

PostgreSQL Shared Libraries: Solving Python Extension Library Path Issues
Smoothly integrate Python extensions with PostgreSQL Shared Libraries, especially when using NumPy. Properly configuring the `shared_libraries` parameter prevents runtime errors by ensuring your database server can locate necessary libraries. Learn how to manage PostgreSQL Shared Libraries for robust Python extensions! #PostgreSQL #Python #SharedLibraries #NumPy #Database #Extensions
tech-champion.com/databas...

Connaissez-vous l'histoire du mec qui ne sait pas programmer mais qui décide dans un moment de passion qu'il va implémenter un truc avec des vraies mathématiques (genre il y a des divisions et tout) en #python ?
Le même gars qui après une demi journée de rage et larmes pose une question tellement spécifique au moteur de recherche qu'il tombe sur l'implémentation déjà existante fournie par #numpy.

C'est à emporter, c'est pour un ami, moi je suis végétarien.

🚀 Exciting Python-Blosc2 Update!
In 3.2.1 release, we've implemented the __array_interface__ protocol for our array containers, dramatically expanding interoperability with NumPy, CuPy and other array libraries.

This means our blosc2.jit decorator now works with virtually all NumPy functions! Compute with the full power of NumPy with either decompressed data... or compressed data without decompressing first.

Check out examples: github.com/Blosc/python-blosc2

Oh look, a rainbow! Exploring the Visible Spectrum with Python Part 1
In this article I write Python code to calculate the frequencies, wavelengths, energies and RGB values of light across the visible spectrum. (Next week in Part 2 I plot the data using Matplotlib.)
#python #pythonprogramming #physics #numpy #matplotlib #light #spectrum
codedrome.substack.com/p/visib

CodeDrome · Exploring the Visible Spectrum with Python Part 1By Chris Webb

The #python #numpy .npy format error messages assume the reader is the API user, not someone using a third-party package calling the API.

LIke, if my user sees "we only support format version..." , how do they know it's NumPy and not me?

Or, if you read a pickled npy file even though I explicitly set allow_pickle=False, the message is "If you trust the file you can load it unsafely using the `allow_pickle=`".

I rewrite some of the messages (which change pretty often) for clarity.

I don't understand the interpolation step of #perlin #noise generation.

I have gradient vectors at the grid points. I have points inside each grid square.

If I call the gradient vectors unit vectors, then the dot product of a gradient vector with a point-position vector is already scaled by distance. It will also be scaled by distance from the other corners.

Is that not already interpolated?

II've heard of Perlin #noise before but never dug into it.

Yesterday I wanted it for a project and found some #python code for it (#numpy apparently doesn't supply Perlin natively...?)

The code works, but it isn't at all clear what the arguments mean or how I'd use it for the project I want.

So *obviously* now I am making my own that makes more sense to me. And also supports multiple octaves.

I mean...it's a day off. What else am I going to do?